中国电子口岸首页-依靠人工智能,ASIC芯片市场涨幅显著

作者:深圳市精业磁性电子有限公司发布时间:2020-03-26

①GPU是最为普遍使用的一种,通过CUDA接口可以让原本只可以用来玩游戏的GPU进行通用计算。进入2017年之后,原本做显卡芯片的NVIDIA立马摇身一变成了人工智能行业里的泰山北斗,几乎所有做人工智能技术的公司,都会买来一大堆NVIDIA的显卡,进行深度学习运算。

人工智能硬件应用场景归纳为云端场景和终端场景两大类。云端主要指服务器端,包括各种共有云、私有云、数据中心等业务范畴;终端主要指包括安防、车载、手机、音箱、机器人等各种应用在内的移动终端。由于算法效率和底层硬件选择密切相关,“云端”(服务器端)和“终端”(产品端)场景对硬件的需求也不同。人工智能目前主流使用三种专用核心芯片,分别是GPU,FPGA,ASIC。

中国电子口岸首页-依靠人工智能,ASIC芯片市场涨幅显著



随着人工智能产业链的火速延伸,GPU并不能满足所有场景(如手机)上的深度学习计算任务, GPU并不是深度学习算力痛点的唯一解。目前以深度学习为代表的人工智能计算需求,主要采用GPU、FPGA等已有适合并行计算的通用芯片来实现加速。




ASIC的市占率可望随着边缘运算的需求增加而明显攀升,从2018年的11%增加至2025年的52%。ASIC之所以受到青睐,原因在于新兴的深度学习处理器架构多以图形(Graph)或Tensorflow为基础架构;且上述提到AI边缘运算受限于功耗和运算效能,因此多以推论为主,而非训练。
谷歌和英伟达公司是人工智能处理领域的两大巨头,但英伟达主要专注于GPU。人工智能领域的ASIC专用芯片仍是一片蓝海,尚未出现足以垄断市场的巨头公司。